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Generation of a large structure (lo5 atoms) of 
amorphous Si using molecular dynamics 

J M Holendert and G J Morgan 
The Department of Physics, The University of Leeds, Leeds LS2 9JT, UK 

Received 11 March 1’391 

Abstract. A method for generating amorphous tetrahedral structures having 13 824 and 
1 IO 592 atoms is presented. We took the Wooten, Winer and Weaire amorphous model of 
216 atoms and put together a number of these blocks. This larger structure was annealed 
using molecular dynamics and.then cooled. Comparison with experiment was carried out 
using the structure factors calculated directly. Very good agreement has been attained. The 
generated structures, contrary to the original www model, wnlain wordination defects. 

1. Introduction 

The very first problem when dealing with amorphous materials, is their structure and 
how to describe the atomic order in such materials. Because of a lack of the long range 
order (LRO) or periodicity, the standard methods of crystallography fail in this case. 
Short range order (SRO) in amorphous material is usually described using the radial 
distribution function (RDF). This function can be easily derived for any model but there 
are many difficulties when the model is small and periodic boundary conditions (PBC) 
are applied. 

If any model of an amorphous system is constructed the next step is to compare it 
with experimental data. Information about the atomic structure factor in a disordered 
system is usually obtained using x-ray or neutron scattering. In order to derive the RDF 
from these data one has to carry out an additional data manipulation which is far 
from being straightforward because of the limited range of q values and the limited 
experimental resolution (for the discussion of this point see, for example, Etherington 
eta1 1982). On the other hand, the experimental scattering curves correspond directly 
to the structure factor S(q). The structure factor can be directly calculated for a model 
provided one has a model of sufficient size (we will return to this point in section 4). 

In this paper we have constructed a very large model of an amorphous tetrahedral 
material (silicon or germanium) using molecular dynamics. Instead of verifying it using 
the RDF, as isdone usually, we have calculated thestructure factor directly andcompared 
it with very recent experimental data. In this way we avoided a lot of problems with the 
RDF calculation and with ambiguities related to obtaining the RDF from experimental 
data. 

t On leave from Institute of Physics, lagellonian University, Cracow, Poland. 
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We compared the model for S(q) with scattering results for Si (Former and Lannin 
1989). The preliminary results of our studies have already been published (Holender 
and Morgan 1991) but this paper represents a further advance using an improved 
algorithm and a much larger number of atoms. Also, a more detailed analysis is carried 
out. 

2. Interatomic potential 

It is now well established that pair potentials alone are unable to describe tetrahedral 
semiconductors. The situation can be improved with a first principles technique (Car 
and Parrinello 1985) or by using phenomenological potentials (an up-to-date review 
on this problem can be found in Carlsson 1990). There are also some intermediate 
approaches, for example the empirical tight-binding molecular dynamics (ETBMD) of 
Wang eta1 (1989), Khan and Broughton (1989) or Laasonen and Nieminen (1990). 

First principle methods are very attractive and have already been applied to amorph- 
ous silicon, for example Car and Parrinello (1988) or Drabold et a/ (1990) but they are 
extremely computationally demanding so that, at present, they can be applied to only 
very small systems (less than 100 atoms). If, however one is going to simulate bigger 
systems (more than 1000 atoms) one must, at current computational capabilities, apply 
phenomenological potentials. However, there is the very recent paper on ETBMD simu- 
lationsof512atomsof Siby Wangetal(1991). 

In phenomenological approaches the ‘cluster potentials’ (e.g. Stillinger and Weber 
1985, Pearson et a/ 1984, Biswas and Hamann 1987) or the ‘cluster functionals’ (Tersoff 
1988, Baskes 1987, Bolding and Andersen 1990) are used. Some potentials have been 
applied successfully to the various simulations of a-Si. The Stillinger and Weber (1985) 
potential was used by Kluge et a1 (1987), Broughton and Li (1987), Luedtke and 
Landmann (1988, 1989a, b), and very recently by Kwon et al (1991) for studies of 
Staebler-Wronsky effect in a-Si, and by Ding and Andersen (1986) for amorphous 
germanium. The Biswas and Hamann (1987) potential was used by Biswas er al(1987). 
The Stillinger and Weber (1985) potential was also used for binary amorphous systems 
such as M e G e  (Ding and Andersen 1987) and Si-H (Mousseau and Lewis 1990,1991). 

There are many papers comparing various potentials and analysing their appli- 
cability. The general validity of the Stillinger and Weber (1985) potential is not com- 
pletely clear. Cowley (1988) for example, concluded that the potential gives the best 
overall description of Si. Kluge et a1 (1986) found however, that it does not describe 
elastic properties correctly. It also fails to describe some surface properties of Si (e.g. 
Wilson el al1990). On the other hand there are many papers supporting the application 
to amorphous silicon and germanium, usually with increased strength ,of the three-body 
component of the potential compared with the original value. 

We decided to use the Stillinger and Weber (1985) potential. This potential is 
composed of a standard pair term and an additional three-body component stabilizing 
the tetrahedral network of silicon. We carried out, however, the additional simulations 
using an increased value for the three-body strength following the papers of Ding and 
Andersen (1986), Biswas et al (1987), Broughton and Li (1987) and Luedtke and 
Landman (1988). For the parameter h we used value 31 (for the Stillinger and Weber 
1985 potential h = 21). This potential corresponds exactly to that derived by Diang and 
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Andersen (1986) for Ge except for energy and length scaling. We will denote this 
modified potential by SWM. This modification decreases the probability of large dev- 
iations from tetrahedral structure. The original Stillinger and Weber (1985) potential 
was aimed at describing correctly the liquid and solid phases. Ding and Andersen (1986) 
suggested that there are no parameters which describe, simultaneously, all three phases 
(solid, liquid, and amorphous) correctly. They reported that a correct description of 
solid and amorphous germanium can be attained with an increased strength for the 
three-body potential. On the other hand, Luedtke and Landmann (1989a), in their later 
paper, insisted that it isonlyamatterofsufficientlylongsimulations and that theoriginal 
Stillinger and Weber (1985) values work for a-Si. 

3. Method of a-Si generation 

The generation of the amorphousstructures has been performed in various waysstarting 
from the first principles methods discussed in section 2 .  A common feature of these first 
principle models is the small size of the amorphous block of material. For Car and 
Parrinello (1988) and Drabold el a1 (1990) the number of atoms in a cubic cell was 54 
and 63 respectively. 

Wooten et a1 (1985) constructed an amorphous tetrahedral network (denoted by 
www) composing 216 atoms by starting from a crystalline material and performing 
stochastic atomic rearrangements. This model, composing 216 atoms, has a periodicity 
in the n,y ,  and z directions equal only to three lattice constantsof c-Si namely 16.29 A. 

The most usual method for generating a-Si is to melt Si using molecular dynamics 
(MD) and quench or cool it. This technique was applied by Car and Parrinello (1988), 
Drabold era1 (1990), Kluge et a1 (1987), Biswas et a1 (1987), Broughton and Li (1987), 
Luedtke and Landmann (1988,1989a) and by Ding and Andersen (1986) for amorphous 
germanium. These models usually contain hundreds of atoms. Luedtke and Landmann 
(1989b) obtained a-Si by simulating atomic deposition. 

In order to reduce the amount of the computer time required for the amorphization 
of the structure and to  avoid problems with obtaining a-Si by quenching a liquid we used 
the www structure as a startingpoint. We first relaxed this structure using the Stillinger 
and Weber (1985)potential. Onlysmall displacements tookplace but the size of the box 
changed slightly so that the equilibrium density p of the block is 0.958 of that for 
crystalline silicon. For the original www model the minimum in-total energy is reached 
for p = 0.949, see figure 1 (dotted curve). If we relaxed the w structure (we will 
denote this relaxed structure as WR) for a sufficiently long time the structure has a 
minimum at p = 0.958 and the energy is slightly (0.5%) lower (dashed curve in figure 
1). The corresponding curve for crystalline silicon (solid curve) isshown for comparison. 
The analogous plots for the Stillinger and Weber (1985) modified potential (SWM), with 
A = 31 instead of 21, are shown in figure 2. 

The WR structure was used in subsequent calculations. At first we put together 
eight such blocks forming a system of 1728 atoms, twice as large in any direction. We 
heated it in order to get rid of an old periodicity (we applied ?D PBC for this larger system 
but the periodicity in any direction was initially two times smaller than the actual block 
size). After cooling this larger amorphous block we repeated this procedure to obtain 
the amorphous model containing 13 824 atoms and once more for a model of 110 592 
atoms. The later model created an upper limit of our computational abilities. 
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Fignre 1. Energy versus density curves for lhe Stillinger and Weber (1985) potential for the 
WRW structure (dotted curve). relaxed WWR structure (dashed curve) and crystalline Si 
(solid curve). Energy is expressed in Stillinger and Weber (1985) units (2.17 eV atom-') and 
pis expressed in the density of c-Si unit. 

4. Structure factor calculations 

Because of the reasons given in the Introduction we decided to calculate the structure 
factor directly and not via Fourier transformation of the RDF as is usually done. We 
directly evaluated the sum 

where R, denotes the position of the nth atom and N the total number of atoms. 
This quantity was calculated by a direct summation for a set of qx ,  qu and qr chosen 

according to the periodic boundary conditions, i.e. qx = nx2x/L, qv = nY2n/L, and qz = 
nz2n/L where L is a size of the box and n,, ny, n, are integers. Because we are dealing 
with a system which is isotropic on a macroscopic scale we calculated S as a function of 
the modulus q by averaging over all orientations. The fluctuations in S(q)  provided us 
with a perfect test for the disappearance of the internal periodicity. If we put together 
some blocks we increase the number of available q point but as long as any additional 
periodicity remains the values of S(q) at these additional points is equal (or close) to 
zero. Calculated in this way S ( q )  contains, as is obvious, a lot of 'noise' corresponding 
to interference between waves from atoms separated by large distances. Experimental 
curves are smooth because of limited resolution but in reality contain very rapid fluc- 
tuations which are not measurable. Finally, in order to compare with experiment all our 
S(q)  cuwes were convoluted with a Gaussian. Its width depends on the size of system 
(see section 6 ) .  We used a Gaussian with a standard deviation U = 0.05 A-' for 13 824 
atoms while for 110 592atomswe used U = 0.025 A-'. The multiplicity of variousvalues 
of q was taken into account all the time. It is essential for such simulations to have a 
sufficiently large model (over 1000 atoms) because the size of the model determines the 
density of available points in q space. It can be a severe restriction at low values of q if 
the box is small. 
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Fire 2. The same as in figure 1. for the SWM potential. 
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Figure 3. The comparison of S ( q )  for our model MI (solid curve) with results obtained by 
Former and Lannin (1989) (dotted curve) for a film ‘annealed at 6M) “C for 1 h’. 

This method for calculating the structure factor was applied by Guttman (1981) in 
his studies of the hydrogenated silicon but because of small number of atoms he was 
unable to set accurate curves for small values of a. 

5. Molecular dynamics method and the ‘thermal treatment’ 

A standard Molecular Dynamics (MD) technique was used with Andersen’s (1980) 
methodofconstantpressure. Theiteration timewasequal 1.5 x sand thestandard 
‘leap-frog’ algorithm was used. The temperature was kept constant by scaling the 
velocities at every iteration step, which can be thought of as a reasonable approximation 
to a canonical ensemble (e.g. Nose 1990). 

The optimum thermal treatment we were looking for was not intended to resemble 
the real experimental generation of a-Si. Rather, we were looking for the most efficient 
method for the computer generation of a model of a-Si with large dimensions. The final 
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Figure 4. The comparison of S(q) for our model M I  (solid curve) with that obtained by 
Etherington er a/ (1982) for Ge and scaled to represent Si (dotted curve). 

Table I.ThecharacteristicsofourmodelsM1 andM2and IhatoltheLandmanandLuedtke 
(LL) model (1989a). 

MI M 2  M 1 M2 LL 
OK OK RT RT RT 

P 0.995 0.943 0.993 0.940 1.006 
R,. 2.93 3-04 2.93 2.99 2.87 
.% 0.05% 2.0% 0% 2.18% 0% 
N1 73.9% 93.5% 73.6% 93.74 -7S% 
Nr 248% 4.5% 24.6% 4.08% 21% 
Nb 1.2% 0.01% 1 .5% 0.01% O.M% 
Nw 4.28 4.03 4.28 4.02 4.21 
E,,, -1.90 -1.83 -1.88 -1.81 -1.89 
E2 -2.14 -1.98 -2.14 -1.97 -2.13 
E ,  0.24 0.15 0.26 0.16 0.24 

RT-room temperature:pAensity (1 lorc-Si); R,,position ofthe first 
minima in RDF (in A); N,-percentage of i-coordinated atoms, coor- 
dination is defined by Rum; ,Na,-average numberot NN: Em,-total energy 
in ( E  units); E:. Ertwo and three body contributions to total energy. 

criteria of acceptance for the structure was the degree of agreement with experimental 
structure factors. 

At first we applied the trial and error method for heating our systems. At this point 
we had to find some criteria as to which structure should be accepted or rejected. While 
increasing the periodicity of the model we must introduce some disorder but we have to 
prevent the structure from melting because of the well-known problem of generating 
a-Si from the melt. 

The following criteria was used. The first is the structure factor itself. If we increase 
the size of the system by two we increase the number of available q points but as long as 
additional periodicity remains the values of S(q) at these additional points is equal (or 
close) to zero and at the remaining points is eight times higher (the average value is the 
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Figure 5. The radial distribution function for our model M1 (for r > 12 .&it is very close to 
unity). 

Angle 

Figure 6. Bond angle distributions for model M1-the total distribution (-) and partial 
distributions corresponding 10 atoms having four (,".), five (---)or six (-.-.) nearest 
neighbours. 

same). Our heating procedure resulted in a structure factor which for q > 5 .&-I was 
greater than 0.6 and smaller than 1.4 for the vast majority of points in q-space and clearly 
indicates that the additional periodicity has been destroyed. 

On the other hand we must not melt the sample. If the sample melts the density and 
coordination increase and an additional peak appears in the RDF on the shoulder of the 
second peak (e.g. Broughton and Li 1987). It is extremely difficult to remain to the 
amorphous state from this over-coordinated liquid. 

6. Results 

After many tests we generated structures in the following way. We heated the sample 
for 2500 iterations at 1000 K (this is below the melting point of the Stillinger and Weber 
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Figure 7. The comparison of S ( q )  for our model M2 (solid curve) with results obtained by 
Fortner and Lannin (1989) (dotted curve) for a film ‘annealed at MM T for I h’. 

Fngure 8. The comparison of S ( q )  for OUI model ?4Z (solid cunc) uith ihar obrdned o) 
Ethrr.ngton rral(1987) for Ge and scaled IO represent SI (dotted cune) 

(1985)oSi but about the meltingpoint of thestillingerand Weber (1983)wwwstructure) 
and cooled it down to 0 K during the next 1000 iterations. The structure was later kept 
at 0 K until further atom re-arrangements were negligible. Later it was equilibrated at 
room temperature (300 K) in order to enable comparisons with the experiments carried 
out at room temperature. The structures at 0 K and at room temperature are almost 
identical. The results for the original Stillinger and Weber (1985) potential and 13 824 
atoms (model denoted by M1) are shown in figures 3 4  and in table 1. The bond angles 
distributions are obtained by calculating the angles formed by any atom and its nearest 
neighbours (NN). The NN are defined by R,,, the first minimum in the RDF (see table 1). 
The partial distributions were obtained by analysing central atoms having a specified 
number of NN. We used two sources of the experimental S(q)  curves in our study. One 
source is the result for Si obtained recently by Fortner and Lannin (1989) (in order 
to make plots clearer we took only the results for the sample annealed at elevated 
temperature) and the second source is data for Ge obtained by Etherington er a1 (1982). 
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Figure 10. Bond angle distributions for model MZ-the total (-) distribution and partial 
distributions corresponding to atom having three (. " .), four (. . . .).or five (-- -) nearest 
neighbours 

This data is rescaled from Ge to Si so this comparison can be also regarded as a test of 
the potential for a-Ge with a rescaled length unit. 

For the potential SWM (model M 2 )  the treatment was the same except for the 
annealing temperature. In this case we had to heat at 2500 Kin order to remove the old 
periodicity. This results are shown in figures 7-10 (for 13 824 atoms). In figure 11 we 
show the unsmoothed curve for the model M2, and the rapid fluctuation mentioned in 
section 4 can be clearly seen. That such fluctuations must exist is easily shown by 
evaluating the root mean square of the structure factor. If, for simplicity, one takes a 
random system it is easily shown that the fluctuations are of the same order as the 
structure factor itself. 

The structure factors for the model M2 composed of 110 592 atoms are shown in 
figure 12. All the other features (energy, density, percentage of defects) of this model 
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Figure 11. Unsmoothed slructure factor for the M2 model 
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Figure 12.Structure lactor formodel M2composedof 110 592atomr (sol1dcurve)compared 
withthat obtained by FortnerandLannin(1989) (dottedcurve) lora film'annealeda16M)"C 
lor 1 h'. 

are almost the same as for the model M2 composed of 13 824 atoms. For the larger 
system we were able to use a narrower Gaussian. The structure factors obtained for 
various model sizes and using different widths for the Gaussian are shown in figure 13. 
If we increase the dimensions of a system by a factor of two (eight times more atoms) 
we can halve the width of the smoothing Gaussian. The quality of curves is more or less 
the same but for the bigger system fine details in S(4) are visible (for example splittingof 
the first peak in figure 12). We are not able to verify all the details of S(q)  experimentally 
because the 'resolution' we can obtain in our simulations is higher than the experimental 
one. The comparison with experiments should be carried out using mainly the second 
and further peaks because the amplitude of the first peak is very sensitive to the applied 
smoothing and this is probably true for experimental results as well. The amplitudes 
and shapes of the remaining peaks are almost independent of the Gaussian width (see 
figure 13). 
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The density of the M1 model is almost exactly equal to the density of c-Si. For M2 
thedensity waslower (0.943of the densityofc-Si).Thisisveryclose to theexperimental 
value 0.955 reported by Fortner and Lannin (1989). Our models M1 and M2 also differ 
in the number of the coordination defects. Here coordination is defined by the number 
of neighbours closer to an atom than the first minimum in the RDF (R,,, see table 1). 
This seems to be a reasonable definition of nearest neighbours, and the overall number 
of coordination defects is not very sensitive to the choice of R,, in the range close to the 
minimum in the RDF. From a detailed analysis of the structure using 3D graphics, we can 
conclude that the coordination defects are real and that we cannot remove a defect by 
small displacements of atoms. For the M2 model, defects are distributed quite randomly 
in the system and very often three or five coordinated atoms are surroundedonly by four 
coordinated atoms. 

The M1 model gives a high number of coordination defects. It is a feature of the 
Stillinger and Weber (1985) potential, and all a-Si models generated using this potential 
have a high percentage of over-coordinated atoms. On the other hand the M2 model 
gives a more reasonable concentration of 'defects'. The S(q) form and density also seem 
to be closer to experimental values. The experimental and model S(q) curves differ 
slightly in the form of the first peak but, as discussed above, it may be the effect of the 
smoothing we applied. 

The total bond angle distribution for M1 is peaked at the tetrahedral angle but there 
is a well marked distortion on the small angle shoulder. The partial curves clearly show 
that this distortion is due, almost entirely, to five coordinated atoms. 

It is worth noticing that the shape of these curves is almost identical with ones 
obtained by Luedtke and Landman (1989a). The quantitative comparison is slightly 
complicated because they normalized every curve independently so information about 
relative intensities is lost. The percentage of three, four and five coordinated atoms are 
also very close to our results (see table 1). We have therefore generated structures with 
features which are, in general, similar to those of the Landman and Luedtke model 
(1989a) but of course our structures are much larger (they had only 588 atoms). They 
created their model by slow cooling from the melt and needed about 3 x lo6 iteration 
steps to generate the structure while we are able to obtain a very similar structure in less 
than 10' iterations. This is a great advantage in starting from the www model. 

The corresponding total bond angle distribution for the M2 model (figure 9) is 
dominated by four coordinated atoms and so there is almost no distortion. 

, 

7. Discussion and conclusions 

The importance of good a-Si (or a-Ge) models for theoretical considerations is quite 
obvious. It is extremely useful, from a theoretical point of view, to have big 'ideal' 
structures without some of the features inevitably induced by particular methods of 
preparation. The fine detailsinS(q) are very important incalculating electron properties 
of a-Si (Morgan er a[ 1989). The larger structures also create opportunities for studying 
defects, transport properties and so on. In this paper we took advantage of the www 
model as a very good approximation of a-Si for a small number of atoms. By starting 
from the www model we saved a lot of computer time. Our model after scaling can also 
be treated as a model of a-Ge. For all models we applied 3D PBC. The periodicities for 
the M2 model of 13 824 atoms and 110 592 atoms were about 66.4 8, and 132.8 8, 
respectively. 
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There are some features which distinguish our model from w w  . The very first is the 
fact that we have coordination defects. The concentration for M1 seems to be to high (it 
seems to be an unavoidable feature of the Stillinger and Weber (1985) potential), For M2 
thenumberofdefectsismuchmorereasonable but it isnotclearifthisisrepresentativeof 
a real system. 

We can conclude that the modified Stillinger and Weber (1985) potential with a 
higher value of three-body contribution ( A  = 31 instead of 21) is more suitable for the 
amorphous system. This potential will not work correctly for the liquid state and will 
not predict a correct value for the melting point. It has already been claimed by Ding 
and Andersen (1986) that there are no parameters for the Stillinger and Weber (1985) 
potentials which work simultaneously for all condensed phases. 

We have verified our model using directly calculated S(q) curves instead of the RDF. 
This approach seems to have many advantages but there are some limitations. One has 
to have a model of relatively large size (over 1000 atoms at least) otherwise the density 
of points in q space is too small especially for low values of q. 

There is, however, no unique relation between the real space structure and structure 
factor. Agreement between structure factors does not necessarily mean that the real 
spacestructuresare identical. Our model MZdoeshoweverseem to be incloseagreement 
with available experimental data. 

Weshouldalso comment on thecomputationaleffort for evaluatingS(q). It increases 
dramatically with the size of a model. If we increase the box size m times the number of 
atoms is increased by m3 and the number of points in p space increases also as m3 so the 
time of the calculations increases as m6. 

We are now in the processof applyingourmodel tocalculate theelectronicproperties 
of a-Si. The structures generated in this paper will be also used as a basis for further 
studies of the properties of hydrogenated a-%. 
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